Cantilever#
![]() |
In this example we will demonstrate:
|
from math import inf
from dlubal.api import rfem
import os
def define_structure() -> list:
"""Define and return a list of structural objects."""
return [
# Define material
rfem.structure_core.Material(
no=1,
name='S235',
),
# Define section
rfem.structure_core.Section(
no=1,
name='HE 300 A',
material=1,
),
# Define nodes
rfem.structure_core.Node(
no=1,
),
rfem.structure_core.Node(
no=2,
coordinate_1=6.0,
),
# Define line
rfem.structure_core.Line(
no=1,
definition_nodes=[1, 2],
),
# Define member
rfem.structure_core.Member(
no=1,
line=1,
section_start=1,
),
# Define nodal support at Node 1 (fully fixed)
rfem.types_for_nodes.NodalSupport(
no=1,
nodes=[1],
spring_x=inf,
spring_y=inf,
spring_z=inf,
rotational_restraint_x=inf,
rotational_restraint_y=inf,
rotational_restraint_z=inf,
),
]
def define_loading() -> list:
"""Define and return a list of loading objects."""
return [
# Static analysis settings
rfem.loading.StaticAnalysisSettings(
no=1,
analysis_type=rfem.loading.StaticAnalysisSettings.ANALYSIS_TYPE_GEOMETRICALLY_LINEAR
),
# Define load cases
rfem.loading.LoadCase(
no=1,
static_analysis_settings=1,
),
rfem.loading.LoadCase(
no=2,
static_analysis_settings=1,
),
# Define nodal loads
rfem.loads.NodalLoad(
no=1,
load_case=1,
nodes=[2],
load_type=rfem.loads.NodalLoad.LOAD_TYPE_COMPONENTS,
components_force_y=5000, # Force in Y direction (N)
components_force_z=10000, # Force in Z direction (N)
),
rfem.loads.MemberLoad(
no=1,
load_case=2,
members=[1],
load_type=rfem.loads.MemberLoad.LOAD_TYPE_FORCE,
magnitude=10000,
),
# Define design situation
rfem.loading.DesignSituation(
no=1,
design_situation_type=rfem.loading.DesignSituation.DESIGN_SITUATION_TYPE_STR_PERMANENT_AND_TRANSIENT_6_10,
),
# Define load combination
rfem.loading.LoadCombination(
no=1,
name='CO1',
items = rfem.loading.LoadCombination.ItemsTable(
rows=[
rfem.loading.LoadCombination.ItemsRow(
load_case=1,
factor=1.35,
),
rfem.loading.LoadCombination.ItemsRow(
load_case=2,
factor=1.5,
)
]
),
design_situation=1,
),
rfem.loading.LoadCombination(
no=2,
name='CO2',
items = rfem.loading.LoadCombination.ItemsTable(
rows=[
rfem.loading.LoadCombination.ItemsRow(
load_case=1,
factor=0.85,
),
rfem.loading.LoadCombination.ItemsRow(
load_case=2,
factor=1.0,
)
]
),
design_situation=1,
),
]
"""Runs the structural analysis example."""
with rfem.Application() as rfem_app:
# Step 1: Create a new model
rfem_app.create_model(name='cantilever')
# Step 2: Clear existing objects
rfem_app.delete_all_objects()
# Step 3: Define and create all objects
objects = define_structure() + define_loading()
rfem_app.create_object_list(objects)
# Step 4: Retrieve information about specific objects
print("\nRGet Object List:")
object_list = rfem_app.get_object_list([rfem.loading.LoadCombination()])
for object in object_list:
print(f"{object.DESCRIPTOR.name} | {object.name} | {object.combination_rule_str}")
# Step 5: Run plausibility check
plausibility_check = rfem_app.plausibility_check(
type=rfem.PLAUSIBILITY_CHECK_CALCULATION,
skip_warnings=True
)
print(f"\nPlausibility Check:\n{plausibility_check}")
if plausibility_check.succeeded:
# Step 6: Perform calculation
calculation = rfem_app.calculate_all(skip_warnings=True)
print(f"\nCalculation Info:\n{calculation}")
# Step 7: Save model with results
model_path = os.path.abspath('./cantilever')
rfem_app.save_model(path=model_path)
print(f"\nModel File Path:\n{rfem_app.get_model_main_parameters().model_path}")